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Abstract

This paper follows Harvie (2000)’s research program in testing both Goodwin
(1967)’s predator-prey model and the extension proposed by van der Ploeg (1985).
The author’s aim is to provide a guideline for the estimation and the backtesting
strategy that can be applied to such a class of continuous-time macroeconomic
model. The goal of this paper is to propose and test stochastic differential equa-
tions for Goodwin’s model and one of its extension by using an estimation technique
based on simulated maximum likelihood developed by Durham and Gallant (2002).
The data considered here is that of wage share and employment rate in the United
States from 1948:Q1 to 2017:Q2. Results show that two structural breaks–in the
beginning of the 80s’ and late 90s’–are likely to have occurred and Goodwin-type
model endowed with Leontief production technology explains more accurately the
data than the van der Ploeg’s CES production function. These results are partly
confirmed by a backtesting strategy which highlights that the forecasting property
of the Goodwin model is overwhelmingly superior to a VAR model on the consid-
ered data, especially for the CES specification. Both the estimation and backtesting
strategies can be used to assess the empirical improvement on any extension of the
Goodwin model.
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1 Introduction

It has been half a century since Goodwin (1967) developed a model of endogenous
real growth cycles. Based on a simple and well known dynamic–the nonlinear Lotka-
Volterra prey-predator model–Goodwin’s model appeals in its simplicity and can be
easily applied by a wide range of researchers in a variety of fields (physics, biology
among others). In the late 1970s and 1980s, this research focused on relaxing one or
more of the original model’s assumptions and on adding new variables.1 More recently,
with the development of fast computing machines, which lower the costs of numerical
simulation of continuous-time models, a large body of literature, especially in higher
dimension, has emerged.2 Although the literature is enriched by new theoretical ex-
tensions the empirical development has not been extensively explored. Currently, the
best-known empirical research on Goodwin’s model is perhaps that published by Harvie
(2000).

In the year 2000, Harvie published a paper with mixed conclusions. On the one
hand, using qualitative evaluation, Harvie acknowledged that the Goodwin model makes
clear predictions on the interdependence of the employment rate and income distribu-
tion based on the clockwise behavior of the data over ten OECD countries. On the other
hand, Harvie’s findings for empirical estimation of the equilibrium point (the growth
cycles’ centers) and the cyclical periodicity for each country did not give satisfactory
results. Harvie concluded by saying that further extension of the model should be
explored in order to increase the reliability of the model’s behavior. However, Gras-
selli & Maheshwari (2017b) showed that Harvie made reporting errors for the short
term Phillips curve coefficients, thus destabilizing the conclusions. Furthermore, the
findings of Grasselli & Maheshwari (2017a) provide a more optimistic picture of the
Lotka-Volterra-type model to fit empirical data, thus to explain the data’s behavior.

In developing a strategy to estimate continuous-time models such as Lotka-Volerra’s
with low-frequency data, several potentially important caveats arise– see Section 3.
Firstly, an intuitive way to tackle the estimation of such models would be to find a set of
parameters that minimizes the distance of numerical deterministic simulations from the
true observations.3 Therefore, at each time, the difference between the true observation
and the position of the estimated model is equal to the residual and is interpreted as
being a measurement error. For example, if the observed value of the employment rate
is not in the closed orbit of Goodwin’s model, it is because this value has been wrongly
assessed. Additionally, this type of estimation is also largely affected by the choice of
the initial values. This is due to the fact that each simulation of the Goodwin model is
a closed orbit,4 thus indefinitely passing through the initial values, and therefore, the
choice of the starting point will fundamentally change the outcome of the estimation.
Another possible estimation strategy would be the maximum likelihood estimation. If
one supposes that the Goodwin model is extended in a stochastic fashion, the system
would then be made of stochastic differential equations (hereafter SDEs). Ideally, the
exact transition density would be available to compute the maximum likelihood of the

1See Desai (1973); van der Ploeg (1985, 1987) among others.
2See Keen (1995); Grasselli & Costa Lima (2012); Grasselli et al. (2014); Grasselli & Nguyen-Huu

(2015); Nguyen-Huu & Costa-Lima (2014); Giraud et al. (2017) among others.
3Numerical simulations rather than the explicit solution of the system are mentioned here since the

latter is unlikely available.
4Indeed the model is structurally unstable, see Goodwin (1967).
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model. Unfortunately, the latter is known only in a few simple cases. When the solution
is unknown, one can approach it by using a first-order approximation, but the lack
of high-frequency data may generate an insufficient approximation, leading to biased
estimation results.

In order to overcome these problems, this article uses the technique developed
by Pedersen (1995b,a) and Durham & Gallant (2002), which is commonly known as
the simulated maximum likelihood estimation (hereafter SMLE). This technique is a
promising alternative candidate for several reasons. First of all, it overcomes the prob-
lem of low-frequency data, since the simulated transition density converges towards
the true transition density. Additionally, the estimation results are independent of the
initial condition. Finally, by using SDEs rather than the deterministic counterpart, the
model can explore the entire phase space, see Nguyen-Huu & Costa-Lima (2014).

After extending the Goodwin (1967) and the van der Ploeg (1985) models to a
stochastic framework, this paper estimates those models using the SMLE techniques
with wage share and employment data in the United States (1948:Q1-2017:Q2). A
preliminary analysis on the data shows that the (parametric) relationship given by the
dataset may have changed approximately in 1984:Q1 and 2000:Q1. Furthermore, I
show that Leontief’s extension model, as opposed to the production sector is endowed
with a CES production function, is the best candidate to explain the data’s behavior. A
backtesting strategy based on out-of-sample error forecasts is proposed, with the aim of
measuring the performance of the Goodwin model relative to a purely statistical vector
autoregressive model (hereafter VAR).5 Given the results, I show that stochastic Good-
win based models are a (very) promising alternative to a VAR model for short term
forecasting purposes. Although the Goodwin model is almost uniformly superior to the
VAR, further improvements might be worth exploring when forecasting the employ-
ment rate–especially in crisis period–for example, by including the investment function
in the same fashion than Keen (1995) model.

This paper is organized as follows: In Section 2, an overview of the deterministic
Lotka-Volterra based model and its extension made van der Ploeg (1985) is proposed,
and the extension of those models to stochastic differential equations is outlined. Sec-
tion 3 introduces the framework for the estimation technique and a guideline of how
the identification issue is tackled. Section 4 presents the data set and the treatment as-
sumed in the paper and an analysis of the regularity of the data, turning to the results
of the estimation of stochastic Goodwin models. The backtesting strategy is treated in
Section 5. Finally, Section 6 offers concluding remarks and extensions.

2 The Lotka-Volterra based models

The aim of this section is threefold: (i) to introduce the Goodwin (1967) model and its
extension made by van der Ploeg (1985); (ii) to discuss Harvie’s parameter estimates
of the Goodwin model and; (iii) to extend those models, allowing for endogenous
stochastic perturbations.

5VAR model, well known to be a non-economically based model and, also, for its forecasting ability,
was chosen as the baseline model.
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2.1 The deterministic models

Goodwin model (1967)

Goodwin (1967) introduced a growth cycle model of employment and wages based on
a Lotka-Volterra predator-prey model. The predator-prey variables are the employment
rate denoted by, λ, and the wage share, ω.6 Assuming a Leontief production function,
the modern version of the model7 boils down to a two-dimensional systemω̇ = ω (φ(λ)− α)

λ̇ = λ
(

(1−ω)
ν
− [α + β + δ]

)
,

(1)

where the function, φ(.), represents a short term Phillips curve. Throughout the paper,
this function is assumed the following properties to hold:

φ ∈ C2([0, 1)), φ′(λ) > 0, φ′′(λ) ≥ 0 ∀λ ∈ [0, 1), φ(0) < α and lim
λ→1−

φ(λ) = +∞.

Moreover, it is easy to verify that the function κ(ω) := (1 − ω) verifies the following
conditions:

κ ∈ C2(R+), −∞ < κ′(ω) < 0 ∀ω ∈ R+, κ(0) > ν(α + β + γ) and lim
ω→+∞

κ(ω) = −∞,

for some reliable parameters values defined shortly. These two conditions, similar to
the Assumption 1 in Nguyen-Huu & Costa-Lima (2014), are sufficient in order to ensure
that, when simulation system (1), (ωt, λt) ∈ D := R∗+ × (0, 1) ∀t ≥ 0 if (ω0, λ0) ∈ D.

Parameter estimates of the model and the values found in the literature (mostly
Harvie (2000) and Grasselli & Maheshwari (2017a)) are listed below, and when neces-
sary, methodological issues are addressed.

The productivity growth, α

The parameter α > 0 is the labor productivity growth and drives the deterministic
growth of the output-to-labor ratio, a, the underlying assumption is,

ȧ

a
= α.

By defining the timeserie of a as the US GDP at constant prices over the employment
level, Harvie (2000) estimated the following equation,

log(at) = log(a0) + αt+ εt

and found an estimate for α, for the timeframe 1951-94, at 0.0111, while Grasselli &
Maheshwari (2017a) found 0.0155 for the period 1960-2010.

6The full derivation of the model is presented in the Appendix A.
7See Desai et al. (2006).
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The labor force growth, β

The potential workforce, N , is assumed to grow exponentially at a coefficient β > 0:

Ṅ

N
= β.

Using a similar method for labor productivity, Harvie (2000) estimated this parameter,
for the period 1951-94, at 0.0206, while Grasselli & Maheshwari (2017a) found 0.0165
for the period 1960-2010. .

The depreciation of capital, δ

As is standard, the stock of capital, K, is assumed to accumulate with respect to invest-
ment, I, and to depreciate at a constant rate, δ,

K̇ = I − δK.

Although in Harvie (2000) the depreciation rate of capital was not included in the
model, Grasselli & Maheshwari (2017a), this parameter is assumed to be the mean
value of the following timeseries

δG := Consumption of Fixed Capital in current prices
Price deflator for gross fixed capital formation× Net capital stock (2005)

.

By doing so, they found a value for δG of 0.0521.8 Using the above definition, δ depends
on the level of the net capital stock, in particular on its initial value. In the database
provided by AMECO, the level of capital is set using the rather strong assumption that
the capital stock equals three times the nominal GDP in 1960 for every country. In
other terms, to find the initial stock of capital, the methodology used by the AMECO is
Kt0=1960 = 3 × GDP1960. Therefore, the level found for δ will change proportionally to
the assumption regarding the initial capital.

An alternative methodology to compute the depreciation rate is provided by the
Penn World Table 8.1 database (hereafter PWT8).9 In PWT8, the investment is divided
into six classes, with each class having its own depreciation rate.10 Therefore, the
aggregated depreciation rate of capital of the whole economy will depend on what the
capital is made of, and by consequence, the depreciation rate of capital will be time-
variant. Using PWT8, an approximation of the depreciation rate of capital can by made
by taking the mean value. This value would be 0.0376 for US data from 1951 to 2011.
Note that, in PWT8, the initial capital stock is based on the assumption of an initial
capital-to-output ratio methodology. More precisely, an initial amount is assigned for
each of the six classes.11 As previously mentioned, the initial value of each of the six
classes and the path taken by the investment will influence the path of the depreciation
of capital.

8This computation is found using AMECO (the European Commission’s annual macro-economic
database from 1960 to 2010).

9Full details about the database are available in Feenstra et al. (2015)
10For the sake of clarity, structures (residential and non-residential) will have a depreciation rate of

2% while software will depreciate at 31.5% per year.
11The approach based on the steady state of the Solow model was considered and studied, but showed

less stable results than linear regression techniques for a substantial number of countries. For further
details, I refer to the Appendix C of Feenstra et al. (2015).
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When using Bayesian techniques in dynamic stochastic general equilibrium mod-
eling, the inference of the depreciation rate of capital–a structural parameter–suffers
from a lack of identification and therefore cannot be estimated accurately. Therefore,
δ is often assumed to be 0.025 per quarter, or put differently, roughly 10% on annual
basis (for the Euro zone, see Smets & Wouters (2003); for the US, see Smets & Wouters
(2007)).

No consensus emerges about the different methodologies used to find the accurate
depreciation rate of capital. In such instances, for an annual frequency, one has three
options: (i) 0.0521; (ii) 0.0376; or (iii) 0.10. Since each of these values leads to different
behaviors of the Goodwin model–especially for the employment rate–taking one of
them may have a strong influence on the behavior of the estimation. Hence, in the
sequel, I will let the data speak during the estimation of this parameter without any
prior assumption on the level of the depreciation rate of capital.

van der Ploeg model

van der Ploeg (1985) relaxes the assumption that capital and labor cannot be substi-
tuted by endowing the economy with a CES production function,

Y = C
[
bK−η + (1− b)(λLL)−η

]− 1
η ,

where C > 0 is the factor productivity and b ∈ (0; 1) is the share of capital. The
short-run elasticity of substitution between capital and labor is given by σ := 1

1+η . It is
worth recalling that the CES production function allows for three limit cases: (i) when
η → +∞, one retrieves the Leontief production function; (ii) η → 0 leads to the Cobb-
Douglas production; (iii) if η → −1 one recovers the linear production function.12 Let
us assume that the producer maximizes its profit given the wages .13 It follows that
the capital-to-output ratio is now endogenous. It is given by the first-order condition of
profit maximization,

ν(t) := K(t)
Y (t) = 1

C

(
1− ω(t)

b

)− 1
η

.

van der Ploeg (1985) illustrates the important structural instability property of Good-
win model. Indeed, a minor modification in the parameters of the Lotka-Volterra model
can lead to radical change in the quantitative behavior of the economic model. For in-
stance, a small perturbation on the elasticity of substitution (σ ∼= 0), the phase-portrait
changes from a center to a stable focus: the model with the CES production technology.
The reduced two-dimensional system is,14


dωt
ωt

=
(

η
η+1

)
[φ(λt)− α] dt

dλt
λt

=
(
Cb−1/η(1− ωt)1+1/η − (δ + β + α)

)
dt− 1

η

(
dωt

ωt(1−ωt)

) (2)

12As in Goodwin’s seminal version, wages are set conformly to the short run Phillips curve. On the
other hand, we confine ourselves to a real economy, so that the consumption price is normalized to 1.

13This minimal rationality argument is analogous to the assumption in Goodwin’s model that the
allocation of capital and labor is always at the diagonal of the (K,L)-plan, so that we have not only
Y = min

(
K
ν , aL

)
but also Y = K

ν = aL.
14The full derivation is available in Appendix A as a particular case. A slight change for simplicity

and without any consequence has been made compared with van der Ploeg (1985) since the labor
productivity is not taken into account in the wage bargaining process.
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Since the assumptions of both models are similar, most of the parameters of the systems
(1) and (2) look alike. The difference lies in the new parameters introduced by the CES
production function. It also worth noting that one of the benefits of the van der Ploeg
extension of the Goodwin model is that the trajectories taken by model (2) are less
sensitive to small changes in the set of parameters than model (1).

Estimating those models parameter per parameter may lead to spurious results since
certain key parameters for the dynamics, for instance δ, are very sensitive to the choice
of the database and the methodology chosen to compute it. As a result, one can esti-
mate the model as a whole with no identification assumptions for any of the param-
eters, especially for δ and ν. In what follows, the SMLE will be used to estimate the
entire model. Before moving to this, however one needs to extend the model from
deterministic to stochastic.

2.2 The stochastic extensions

In order to introduce stochastic perturbations in the system, some of the key assump-
tions of the Goodwin model are extended. These assumptions are on the wage dynam-
ics (i.e. the growth of W ) and the labor productivity dynamics (i.e. the growth of a).15

Thus following assumptions will be used

• Assumption 1: The labor productivity is defined as,16

dat
at

:= αdt− σ1(·)dB1
t ,

with B1
t a Brownian motion.

• Assumption 2: The real wages are set using a short-term stochastic Phillips curve,

dWt

Wt

:= Φ(λt)dt+ σ2(·)dB2
t ,

with B2
t a Brownian motion independent from B1

t .

The first assumption is borrowed from Nguyen-Huu & Costa-Lima (2014) while the sec-
ond has a twofold motivation: (i) the short term Phillips curve has been noisy through-
out the second half of the last century;17 and (ii) the estimation procedure requires
to have a invertible covariance matrix permitted by this extra assumption.18 When
applying both assumptions to the model (1), one retrieves the following model19


dωt
ωt

= (Φ(λt)− α + σ1(·)2) dt+ σ1(·)dB1
t + σ2(·)dB2

t
dλt
λt

=
[

(1−ωt)
ν
− (α + β + δ) + σ1(·)2

]
dt+ σ1(·)dB1

t .
(3)

It is important to note that if σ2 = 0 (i.e. whenever the short-term Phillips curve is deter-
ministic), then one recovers the model of Nguyen-Huu & Costa-Lima (2014). Following

15See Appendix A for more details on the model’s derivation.
16This assumption is slightly modified for the van der Ploeg extension of the Goodwin model. See

Appendix ?? for further details.
17See Blanchard (2016b) for further details.
18More detailed shortly.
19See Appendix A for the full derivation of the stochastic models.
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the insights of Nguyen-Huu & Costa-Lima (2014) on the dynamics behavior within D, I
will apply the estimation methodology under the following additional assumptions on
system (3)

• Assumption 3: Φ : λ ∈ [0, 1) 7−→ Φ(λ) = φ1
(1−λ)2 + φ0

• Assumption 4: σ1(·) = σ1(1− λ)1/1000

• Assumption 5: σ2(·) = σ2(1− λ)1/1000(λ)1/1000.

Note that, when applying assumptions 1,2,3,4, and 5 on the boundaries of the domain
D, that is (

B((ω0, ε1), ε2)
⋃
B((ε3, λ0), ε4)

)⋂
D

with B an open ball in R2, εi > 0 ∀i = 1, . . . , 4 and (ω0, λ0) ∈ R2, system (3) dynamics
is closely akin to the one of Nguyen-Huu & Costa-Lima (2014). It is, therefore, very
likely that this system is staying within the domain D in accordance with Nguyen-Huu
& Costa-Lima (2014).20

When applying these assumptions to the model (2), we get

dωt
ωt

=
(

η
η+1

) {
φ(λt)− α− 1

2

(
1−η

(1+η)2 (σ1(·)2 + σ2(·)2)− σ1(·)2

η+1

)
σ2(·)2

η+1

+
(
σ1(·)η
1+η

)2
+
(
σ2(·)
1+η

)2
}
dt+

(
η
η+1

)
σ1(·)dB1

t +
(

η
η+1

)
σ2(·)dB2

t

dλt
λt

=
(
Cb−1/η(1− ωt)1+1/η − (δ + β + α)

)
dt

−
(

ωt
1−ωt

)2 ( 1
1+η

) (
σ1(·)2+σ2(·)2

2

)
dt−

(
1−η

(1+η)2
(σ1(·)2+σ2(·)2)

2 − σ1(·)2

η+1

)
dt

+
(

ωt
1−ωt

){
−η

(
σ1(·)
1+η

)2
+
(
σ2(·)
1+η

)2
}
dt+

(
η
η+1

)2
σ(·)2

1dt+
(
σ2(·)
1+η

)2
dt

+
[(

ωt
1−ωt

1
1+η

)]2
(σ(·)2

1 + σ2(·)2)dt− 1
η

(
dωt

ωt(1−ωt)

)
+ σ1(·)dB1

t

(4)

It is worth mentioning that, if η → +∞, and if A = 1/ν, model (4) boils down to model
(3), and if in addition σ1 = σ2 = 0, those models are similar to the deterministic case,
1. Finally, putting together both the rationale through which system (3) stays within
the domain D and the inward pointing property of the van der Ploeg extension of the
Goodwin model, make very likely that system (4) to have an existing solution that stays
in D.

3 The estimation technique

This section aims to present the methodology used for the estimation and address the
identification issues.

In previous attempts (Harvie (2000), Grasselli & Maheshwari (2017a)) among oth-
ers), the Goodwin model was estimated equation by equation.21 Each parameter was
estimated separately using standard econometric tools such as an OLS, an error cor-
rection model or a vector error correction model. Mixed conclusions were drawn from
those studies: in particular the long run equilibrium found was hardly consistent with
phase space (ω, λ) shown by the data. In order to find better results, Harvie (2000)

20The proof is left for further research.
21As pointed out by Blanchard (2016a), equation by equation estimation procedure can be at odds

with the actual model dynamics.
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pointed out that certain theoretical extensions of the Goodwin model such as Desai
(1973), aid in aligning the cyclical behavior given by the data. However, he also
pointed out that the Goodwin model is econometrically challenging to estimate, and
that additional extensions make the model more difficult to estimate empirically.

Instead of proposing the estimation of new theoretical extensions of the Goodwin
model, this Section aims at providing another estimation approach for such models.
Rather than estimating the model parameter by parameter, I directly estimate the whole
nonlinear dynamical system. The most obvious benefit of the approach is that the
estimation of the depreciation rate of capital, δ, and hence the whole model, does not
rely on the assumption of the level of the initial capital stock made by the database
under consideration as previously mentioned. The estimation will instead be based on
the estimation of multidimensional SDEs.

3.1 Sketch of the SMLE

SDEs are wildly used in finance, pricing theory (see Black & Scholes (1973)), yield
curve models (see the HJM model from Heath et al. (1990)), and algorithmic trading
among others. Financial markets, rather than macroeconomics, are more suitable for a
SDEs setting because data is often available at a high frequency.22 Nonetheless, tools to
infer the ability of SDEs to cope with lower frequency data have been developed.

The estimation methodology is borrowed from Durham & Gallant (2002) and is
extended to the multivariate framework.23 Let us consider a reduced-form SDE on the
probability space (Ω,F ,P) of the formdXt = f(Xt)dt+ g(Xt)dBt,

Xt0 = X0.

Where Xt ∈ Rn is the state variable vector, Bt is a d-dimensional Brownian motion,
f : Rn → Rn is the drift of the process and g : Rn → Rn×d is the diffusion. For the sake
of clarity, Xt = (ωt, λt)T , where T is the transpose operator.

Ideally, to compute the maximum likelihood estimation, one should know the tran-
sition density. Because analytic solutions are rarely available in practical situations,
the transition densities must be approximated numerically. Therefore, numerical meth-
ods are required to approximate their solutions. In what follows, the Euler-Maruyama
scheme is used (see Kloeden & Platen (1992)). On the one hand, the Euler-Maruyama
is computationally intensive in minimizing the error of the numerical methods, but
on the other hand, this scheme is computationally feasible at all times in multivariate
framework. For instance, if one uses the scheme proposed by Jimenez et al. (1999),
one should keep in mind the authors’ caution:

[...] this numerical scheme is not always computational feasible since it
can fail for SDE for which the Jacobian matrix J−1

f (X) is singular or ill-
conditioned in at least a point. (Jimenez et al. (1999), p.593)

For the sake of clarity, the Euler-Maruyama scheme is

X̃i+1 = X̃i + f(X̃i)δ + g(X̃i)δ1/2εi

22The standard time mesh can be some fractions of a second. Such high-frequency data is not available
in macroeconomics where the time mesh is often a quarter, or perhaps a year.

23What follows is a sketch of the methodology, an extensive explanation is available in Appendix B.
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where δ = ti+1 − ti, εi ∼ N (0, 1), and X̃ is the approximated counterpart of X. Un-
der some mild assumptions, it can be shown that this approximation converges to the
true maximum likelihood. Nevertheless, the approximation may not be sufficiently
accurate for the sampling frequencies, especially for macroeconomic data. The gen-
eral idea of the SMLE method is to obtain the true transition probability, p(xt, t;xs, s).
Using the Euler-Maruyama scheme, one can approximate the true transition density
by p(1)(xt, t;xs, s). As previously mentioned, the frequency is too low to provide a good
convergence to the true maximum likelihood estimation. An idea is to generate a subin-
terval s = τ1 < . . . < τM = t, so that the random variable is sufficiently accurate at each
subinterval. The vector (X(τ2), . . . , X(τM−1)) is therefore unobserved and should be
simulated by a Brownian bridge. Because the process is Markovian, one obtains

p(xt, t;xs, s) ≈ p(M)(xy, t;xs, s)

:=
∫ M−1∏

m=0
p(1)(um+1, τm+1;um, τm)

×dλLeb(u1, . . . , uM−1)

where λLeb is the Lebesgue measure. Each subpaths are simulated using the Girsanov
theorem and, therefore, an important sampler.24 The integral can be evaluated using
Monte Carlo integration. By doing so, one obtains the simulated transition probability,
p(M,K)(xy, t;xs, s), where K is the Monte-Carlo parameter. By repeating this operation
for each transition of the dataset, I compute the simulated likelihood.25

3.2 Identification issues

To infer the model (3) with the Leontief production function, it is necessary to order
the model from the parameters that cannot be identified. Indeed, in model (3) the
estimation procedure does not distinguish between β and δ. In the following, I suggest
two counterparts that will be estimated:

dωt
ωt

= (Φ∗(λt)− φ0 + σ2
1) dt+ σ1dB

1
t + σ2dB

2
t

dλt
λt

=
[

(1−ωt)
ψ0
− ψ1 − σ2

1

]
dt+ σ1dB

1
t

where Φ∗(λt) is the short term Phillips curve without constant; and φ0 is the constant
of the short term Phillips curve minus the labor productivity. ψ0 remains the capital-to-
output ratio, while ψ1 is the combined parameter of (α+β+δ). Turning to the model (4),
the CES production function, the same specifications for φ0 and ψ1 are made. The only
difference is that for Cb−1/η, the idiosyncratic effect of C and b cannot be distinguish;
for the estimation it will be denoted by Cb. It is worth mentioning that parameter η,
which controls the substitution between capital and labor, is well defined since it will

24See Appendix B for an extensive discussion of an important sampler adapted for systems (3) and (4)
to stay in the D domain.

25Throughout the paper, the mean value of distribution of the likelihood will be reported.
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weight the influence of the wage share dynamics on the employment rate dynamics.

dωt
ωt

=
(

η
η+1

) {
Φ∗(λt)− φ0 − 1

2

(
1−η

(1+η)2 (σ2
1 + σ2

2)− σ2
1

η+1

)
σ2

2
η+1

+
(
σ1η
1+η

)2
+
(
σ2

1+η

)2
}
dt+

(
η
η+1

)
σ1dB

1
t +

(
η
η+1

)
σ2dB

2
t

dλt
λt

=
(
Cb(1− ωt)1+1/η − ψ1

)
dt

−
(

ωt
1−ωt

)2 ( 1
1+η

) (
σ2

1+σ2
2

2

)
dt−

(
1−η

(1+η)2
(σ2

1+σ2
2)

2 − σ2
1

η+1

)
dt

+
(

ωt
1−ωt

){
−η

(
σ1

1+η

)2
+
(
σ2

1+η

)2
}
dt+

(
η
η+1

)2
σ2

1dt+
(
σ2

1+η

)2
dt

+
[(

ωt
1−ωt

1
1+η

)]2
(σ2

1 + σ2
2)dt− 1

η

(
dωt

ωt(1−ωt)

)
+ σ1dB

1
t

4 Data and the Estimation Results

This section presents the data sources and methodology to construct the phase vari-
ables (ω, λ) are discussed. Secondly, data’s properties are examined. Finally, different
specifications for the short term Phillips curve are derived.

4.1 Data Construction and Preliminary Analysis

Data used for the estimation are taken from two main sources: (i) U.S. Bureau of
Economic Analysis; and (ii) U.S. Bureau of Labor Statistics. The frequency of the data
is quarterly and runs from 1948:Q1 to 2017:Q2. The two main variables used are the
labor share, ω, and the employment rate, λ.The employment rate is defined as:26

λ := Total Employment
Total Labor Force

.

The wage share is

ω =

(
1 + Self Employed

Total Employees

)
CE

GDP at factor cost
,

where CE stands for the compensation of employees, which is the total gross (pre-
tax) wage paid by employers to employees within a single quarter. Although a large
part of the total wages earned in the economy is determined by the compensation
of employees, a substantial amount is located in the gross operating surplus (hereafter
GOS) due to the self-employed (while it represented more than 18% of the total workers
in 2015, this category dropped down to 8% in 2015).27 In order to have a more realistic
measure of the weight of the wage in the economy, one can make the assumption that
the self-employed, on average, earn as much as employees. Taking this assumption, I
add a proportional share, representing the wages earned by self-employed, to the CE
(Self Employed/Total Employees).28 Turning to the denominator of ω, GDP is measured
at factor cost. Since the income approach of the GDP at market price is

GDP (market price) = CE + GOS + T-S
GDP (market price)− T-S = CE + GOS

= GDP (factor cost)
26The definition of the labor share is similar to Harvie (2000).
27This idea is discussed extensively in Mohun & Veneziani (2006).
28This methodology is borrowed from Grasselli & Maheshwari (2017a).
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where GOS can be read as the EBITDA (earnings before interests, taxes, depreciation,
and amortization), and T-S is the net taxes on products and imports.29 Figure 1 repre-
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Figure 1: The empirical phase portrait of the variable (ω, λ). In red, the empirical mean
of the state variables.

sents the empirical phase portrait of the state variables ω, on the x-axis and λ, on the
y-axis. Using qualitative evaluation on similar data sets, Solow (1990), Harvie (2000)
and Mohun & Veneziani (2006), showed that the data have a clockwise behavior, as
would be expected from Goodwin’s theory. It is worth noting that in the left part of
the quadrant, the last cycle, that started in 2007:Q4, is the most at odds with previous
cycles. This inconsistency is mainly due to current wage shares being lower than those
that were explored over the sample. Also, one can note, from a qualitative perspective,
SDEs should provide a feasible modeling if one wants to replicate such kind of trajec-
tory. The red dot in Figure 1 represents the (x, y)−coordinate of the empirical means of
the phase space. Despite that this red dot is, qualitatively, at the center of the portrait,
it seems that multiple cycles are represented in Figure 1, subsection 4.2 shows some
evidences with descriptive statistics.

4.2 First evidences of structural changes

There is a large body of recent macroeconomic literature that focuses on changes in
the relationship (causality, dependency, explanatory strength, etc.) between macroeco-
nomic variables such as GDP, oil price, consumption, investment among others. Those
changes are referred as structural breaks (or regime switching). Various methodologies
could be considered, for instance, Kim & Nelson (1999) and Perez-Quiros & McConnell
(2000) have used a volatility reduction Markov switching model and independently
found a structural break at the date 1984:Q1. Later, using an alternative approach,
Stock & Watson (2003) confirms that the volatility of macroeconomic variables has de-
clined at the aftermath of the FED’s aggressive response to inflation, during the Volcker
era, that was credited to end the United States’ stagflation crisis of the 1970s. Figure

29For the sake of clarity, it can be seen as the V.A.T., or subsidies such as environmental externalities.
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Figure 2: Timeseries of the wage share (top) and the employment rate (bottom). The
shaded grey represents NBER recessions.

2 shows the evolution of the wage share (top) and the employment rate (bottom) over
time. The shaded areas refer to the NBER recession periods. Those recession peri-
ods are highlighted since they somehow represent the end of the Lotka-Voletrra cycle
symbolized by the drop in the employment rate and, hence, may be the premise of a
new cycle era. While the wage share qualitatively shows a downward bending long
term trend that plateaued over the last five to ten years, interestingly, the employment
rate shows first a decreasing trend until mid-1980s’ and, then, an upward trend until
the subprime mortgage crisis (the last grey-shaded area). For the sake of descriptive

Sub-periods Mean of ω St.dev. of ω Mean of λ St. dev. of λ

1948:Q1 - 1984:Q1 0.648 0.011 0.945 0.017
1984:Q2 - 2000:Q1 0.627 0.007 0.940 0.010
2000:Q2 - 2017:Q2 0.606 0.016 0.938 0.018

Table 1: First and second empirical moment of (ω, λ) for given sub-periods.

statistics, table 1 presents the empirical mean values and the standard deviations of the
state variables over different time frame.30 The results show the decline of volatility,
as documented in Stock & Watson (2003), over the first (1948:Q1-1984:Q1) and the
second (1984:Q2-2000:Q1) sub-period and also the downward shift of the mean of the
state variable ω that loses almost two standard deviations from the first to the second
sub-period. On the other hand, the last sub-period shows that, on average, wage-to-
GDP ratio and the employment rate levels are lower than previous sub-periods with
a return to a relatively high volatility era equivalent to sub-period one. As illustrated
by Figure 3, the observations around the empirical mean values, represented by a red
dot, of each sub-period show less dispersion that in Figure 1. Therefore, qualitatively,

30The motivation behind the selected time frame will be discussed shortly.
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Figure 3: Phase space of the three sub-periods.

and as shown in Mohun & Veneziani (2006), one can conclude that various cycles with
different frequencies and equilibrium can be found in the data.

For the sake of completeness, Figure 4 shows each sub-period on the same scale with
different colors: (i) black for the period 1948:Q1-1984:Q1; (ii) the period 1984:Q2-
2000Q1 is represented with the color blue; and (iii) red illustrates the last period
2000:Q2-2017:Q2. Dots represent the empirical mean coordinate of their respective
colors. The downward sloping trend of the wage share over time in the empirical ob-
servation is well illustrated in this graph since, along the sub-periods, the scatter plots,
as well as the empirical means, are heading from the north west towards the south west
of the phase diagram.

4.3 Short term Phillips curve

A degree of freedom for the global behavior of the dynamic and allowed by Goodwin
(1967) lies in the short term Phillips cure. Perhaps, in Goodwin’s estimation frame-
work, previous attempts to estimate the phenomenological behavioral function were
essentially made using OLS, see Harvie (2000), with the aim of estimating:

ẇ

w
= φ(λ). (5)

Nevertheless, using such a framework to estimate differential equation such as the
Phillips curve may lead to spurious results. For simplicity, consider that the time be-
tween t and t + 1 is one year, wt is the real wage, and λt is the employment rate.
Additionally, suppose that using quarterly data, the following linear regression is well
specified (meaning that the residuals pass standard tests)

log
(
wt+1/4

wt

)
= α0 + α1λt + εt+1/4.

Taking the deterministic part, one can rewrite the same equation as∫ t+1/4

t

dwt
wt

= α0 + α1λt,
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Figure 4: Phase space of the three sub-periods.

and by taking the first derivative with respect to t, we are led to a differential equation
with delay:

ẇt+1/4

wt+1/4
= ẇt
wt

+ α1λ̇t,

which involves the theory of delay differential equations. Therefore, if one wants to in-
fer the short term continuous Phillips curve using OLS, one does not obtain the desired
equation 5 because of the discretization bias.31

The estimation methodology proposed in this paper allows the inference of the short
term Phillips curve from its original specification in the context of the Goodwin model.
As stated by assumption 3, this paper will focus on the following specification:

φ(λ) = φ0 + φ2

(1− λ)2 . (6)

4.4 Estimation results

The aim of this section is twofold: (i) to present the fitting of the estimation of the
whole model, this has to be understood as a proof of concept for the SMLE approach;
and (ii) to test for structural breaks in the cycle.

4.5 The fitting

As a preliminary exercise, this section presents the estimation of models (3) and (4)
over the whole sample (1948:Q1-2017:Q2). The quality of the fitting will be measured
by the well-known AIC criterion (see. Akaike (1973)). It is defined as

AIC := −2× log(Likelihood) + 2× Number of parameters.

31I refer the reader to Appendix D for the test on some data generating process.
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This measure allows for the assessment of the relative quality of statistical models
for given datasets. This model selection procedure results in a trade off between the
goodness of fit–the log-likelihood–and the number of estimated parameters. The model
that has the minimal value for the AIC criterion would be qualitatively the best to fit
the data.In the following, each likelihood is computed using first M = 8 and K = 8
and second with M = 16 and K = 128. This two-stage procedure enables to reach the
optimum faster. According to the AIC criterion on the full sample, the result provided

Leontief (3) CES (4)

-5417.29 −4391.25

Table 2: The AIC values of the Leontief and the CES models.

by table 2 is that the modern version of the Goodwin model is a significantly better
candidate to explain the data’s behavior.

4.6 The parameter estimates

In aiming to test the economic reliability, over the whole sample, of the parametric
estimation strategy, this section displays the estimates found for model (3), with a
Leontief production function and model (4), the CES production function counterpart.
Results will then be discussed.

4.6.1 The Leontief production function

φ1 φ0 ψ0 ψ1 σ1 σ2

1.902e− 05 0.0084 6.564 0.056 0.0077 0.01589

Table 3: The parameter estimates of model (3).

Interestingly, the capital-to-output constant ratio, ψ0, is estimated to be 6.6. This
value is at odds with previous findings in the sense that it appears overestimated. On
the other hand, ψ1 displays a value of about 5.6%. Since it represents the compounded
value of (α+ β + δ), and by taking reasonable values for α and β previously discussed,
this would mean that δ is inferred to be approximately 2.5%, lower than what as been
previously discussed. As previously mentioned, this value is the result of the estimation
on the whole sample. However, in the case of structural change (or nonlinearity) in the
timeserie, this estimate may lead to spurious results as it may be in this case here. This
problem will be addressed shortly. One can note that the parameter estimates for each
of the short term Phillips curves are positive and significant.

4.6.2 The CES Production Function

φ1 φ0 Cb ψ1 η σ1 σ2
2.181e− 05 0.0095 0.1296 0.0412 6.2913 0.0104 0.0130

Table 4: The parameters estimate of model (4).
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The estimated parameters revealed in table 4 show that the φ0 and φ1, namely
the short term Phillips curve parameters, are of the same magnitude to the previous
estimates. The remaining parameters (Cb, ψ1, η, σ1, σ2) are relatively close to each other.
The major difference is in the elasticity of substitution between capital and labor; it is
approximately equal to 0.1371 (≈ 1/(η + 1)).

4.7 Structural Breaks

Tests for structural breaks have been extensively studied in timeseries analysis. Back in
1960, to the best of my knowledge, Chow (1960) published the first paper that tests
parameter change in a linear regression. More recently, Bai & Perron (2003) showed
more advance techniques for multiple breaks in the timeseries. Here, with the SMLE
estimation framework, in order to detect a structural break, I minimize the following
criterion:

BIC := −2 log(Likelihood) + log(Sample Size)× Number of parameters.

This model selection criterion was first introduced by Schwarz (1978) and stands for
Bayesian information criterion, or BIC. Compared to the AIC, the BIC penalizes more
the number of parameters by putting more weight, hence it prevents for overfitting.
This choice is motivated by the fact that a structural break will increase the number
of parameters, by making them time-varying. Thus, it will be harder to detect a break
using this technique, unless it significantly improves the likelihood of the estimation
on the whole sample. Table 5 presents the location where the BIC and AIC criteria is

Number of structural break(s) 0 1 2

BIC Leon -5395.5 -5384.5 -5372
AIC Leon -5417.3 -5428 -5437.3

Located break(s) x 2006:Q3 1984:Q1 and 1999:Q2

BIC CES -4365.9 -4466.6 -4475.4
AIC CES -4391.2 -4517.3 -4551.5

Located break(s) x 2010:Q3 1983:Q2 and 1999:Q3

Table 5: BIC and AIC criteria of model 3 for 0, 1 and 2 structural breaks and their
location.

minimal for zero, one, and two structural breaks of both models (3) and (4). Unex-
pectedly, the size of the penalty for a given criterion greatly matters when analyzing
the results. Indeed, if one relies on the BIC, the model that has the better accuracy
in explaining the data would be model (3) without break. However, if one considers
the AIC model (3) with two breaks would be considered. The conclusion according to
the structural breaks is therefore mixed and the remaining of the paper will consider
both cases (without and with two structural breaks). However, the one structural break
case undoubtedly shows the weakest results. Moreover, table 5 shows that for every
specification model (3) uniformly outperforms model (4). Interestingly, the breaks are
located approximately in 1984:Q1, which is consistent to the break date discussed in
Subsection 4.2 and in the year 1999 that represents a change that occurred slightly
before the dot-com bubble crises.
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φ1 φ0 ψ0 ψ1 σ1 σ2

1948:Q1 - 1984:Q1 1.548e− 5 0.0086 1.71 0.201 0.00914 0.0163
1984:Q2 - 1999:Q2 1.475e− 5 0.0047 2.9516 0.124 0.00364 0.0087
1999:Q3 - 2017:Q2 6.55e− 6 0.0042 3.1013 0.126 0.00633 0.0197

Table 6: The parameter estimates of model (3) over the different sub-periods.

Estimated parameters of model (3) are displayed in table (6). Over the different
sub-periods, three main differences with table (3) are worth mentioning. First, the
short term Phillips curve parameters shows a lot of variability throughout the periods.
This finding is not new, the short term Phillips cure has shown a different pattern in the
second half of the past century (see Blanchard (2016b)). A conclusion would be that
the nonlinearity for the short term Phillips curve could have changed in the last sub-
period. Second, the values found for the capital-to-output ratio, ψ0, are almost in line
with the literature for each attempt. Remember, without any prior assumption on the
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Figure 5: The capital-to-output ratio of the United-States - 1950-2013. Source: PWT8.

level of the capital-to-output ratio, the previous finding was approximately 6.6. Figure
5 shows the variation of the ratio over the period 1950-2013 according to the PWT8
database. Within sub-period 1984:Q2-1999:Q2, this ratio oscillates around 2.8, while
the value found is 2.95 and for the sub-period 2000:Q2-2015:Q4 the latter fluctuates
around 3, close to the estimated value 3.1. The change in that estimate generates an
adjustment of ψ1, in line with the literature, compared with the estimates of the model
with no break. This value increases from 6% to approximately 13% that implies a
depreciation rate of capital of about 10% per year. Third, parameters σ1 and σ2, namely
the volatility of the data, reflect the great moderation era by showing a lower volatility
for the second sub-period with respect to the others. Table 7 presents the estimated
parameters for model (4). It shows similar conclusions for the estimates of the short
term Phillips than for the Leontief counterpart for the first sub-period and then diverge.
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Dates φ1 φ0 Cb ψ1 η σ1 σ2

48:Q1-83:Q2 1.507e− 5 0.0081 0.480 0.136 4.402 0.0128 0.0127
83:Q3-99:Q3 2.489e− 5 0.0069 0.446 0.140 6.51 0.0049 0.0074
99:Q4-17:Q2 −2.020e− 6 0.0046 0.337 0.130 30.2 0.0693 0.0184

Table 7: The parameters estimate of model (4).

One can note that the estimates of φ0 are similar for the first and second sub-periods.
Also, the η parameters keep increasing along the sub-periods meaning that capital-labor
substitution keeps decreasing along the time, estimates of the elasticity of substitution
are chronologically 18.51%, 13.32%, and 3.21%. Likewise the previous estimates of
the Leontief production technology, the estimates of the volatility parameters present
similar conclusion in the CES case.

5 The backtesting

This section shows the methodology that is used to implement the backtesting. More-
over, the results for the no break case and the one with two breaks are displayed and
analyzed.

5.1 The Methodology

In seeking to measure the performance of the model, the proposed methodology was
inspired by Kilian & Vigfusson (2013) among others. The underlying concept is based
on out-of-sample error forecast. The structure for the backtesting strategy is outlined
in the following: Suppose that one has a dataset starting at T0 and ending at T1,

• Step 1: Choose a date between T0 to T1, say T ∗.

• Step 2: Make an estimation of the model from T0 to T ∗.

• Step 3: Taking the deterministic form of the model into consideration, run a
simulation for h-periods.

• Step 4: Compare, using distance d, the simulated value to the realized value
obtained in Step 3.

• Step 5: Repeat steps 2-4 by increasing the T ∗ by one period through the end of
the sample.

To measure the performance of the forecast, assume the following distance:

dγ(x, y) = |x− y|γ.

The h-period-ahead forecast performance will be evaluated in the following way: by
considering m periods,

DM
h =

m∑
j=1

dγ(xMih , x
t
ih

),
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where xMih is the h-period-ahead forecast of the model M estimated from the beginning
of the sample to the i-th period and, xtih is the realized value at date i + h. In the
following exercise, we will estimate the model in two ways: First, using the full sample;
and Second, using a subsample of 150 (or 37.5 years) points,32 γ = 1,33 h = 1, . . . , 8,
and m ≈ 180.34 To test the relative performance of the forecast, a VAR will be used as
the benchmark model. Using the AIC criterion, the optimal lag for the benchmark VAR
model is 3.

5.2 The Results for models with no break

Leontief CES
ω λ ω λ

h = 1 0.12003 0.11825 0.11866 0.12077

h = 2 0.16428 0.21614 0.15969 0.22662

h = 3 0.20616 0.33573 0.20320 0.34248

h = 4 0.23916 0.47210 0.23752 0.47483

h = 5 0.28547 0.61642 0.28346 0.61812

h = 6 0.33063 0.77641 0.31757 0.78145

h = 7 0.37227 0.93727 0.34162 0.94490

h = 8 0.41832 1.08931 0.38212 1.07286

Table 8: Relative performance of the model against a VAR.

Table 8 shows the forecasting performance of the Goodwin models under consider-
ation against a VAR. Values below unity, in bold, indicates that the underlying model
is globally performing better than a VAR for the state variable named by the column.
For instance, 0.12003 means that the 1-period-ahead forecast of the Goodwin model
endowed with a Leontief production function performs roughly 88% better than a VAR
model for the state variable ω.

The results in table 8 are very promising. Both phase variables, ω and λ, are fore-
casted with far better accuracy with the SDEs presented in this paper than with the VAR
process, especially in the short run. The relative performance decreases throughout the
quarters ahead although it still shows very good performance. It is worth mentioning
that the state variable λ shows sudden decrease in accuracy to the extent that for the
8th quarter-ahead forecast the VAR would do better. Finally, no clear difference can be
noticed between Leontief and CES technologies.

32A large evaluation period as been chosen in order to avoid any bias on the choice of the sample that
can change the resulting outcome. The sensitivity analysis is available upon request.

33Similar results are found after a sensitivity analysis with γ = 2.
34For the forecast, one can use the simulation made by taking the mean of hundreds of simulated

paths of the stochastic differential model. For computational purposes, 25 trajectories are made from the
stochastic model under consideration, the median value is used as the forecast value.
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5.3 Results for models using a rolling window estimation

Results of the previous exercise is made using the whole sample, however, as previously
discussed, estimated parameters may be biased due to the structural breaks.35 There-
fore, for the sake of comparison, I perform the same exercise by estimating the model
on a rolling window. In using this technique, the length of the dataset remains through-
out each estimation. Meaning that, the methodology presented supra does not hold up
anymore because at each iteration of the loop, the dataset size was strictly increasing.
In this exercise, I chose a sample size of 150 (or 37.5 years),36 this window size will
stay fixed along the backtesting, meaning that as soon as a new forward looking data
point is taken, the first point of the preceded window is dropped.

Leontief CES
ω λ ω λ

h = 1 0.13921 0.10817 0.13712 0.10706

h = 2 0.16750 0.19527 0.17581 0.18468

h = 3 0.19836 0.29957 0.21159 0.27826

h = 4 0.25784 0.42545 0.25080 0.39442

h = 5 0.32235 0.57081 0.31709 0.54217

h = 6 0.36468 0.72471 0.36028 0.66106

h = 7 0.41941 0.88183 0.39795 0.80009

h = 8 0.49479 1.03970 0.44024 0.93821

Table 9: Relative performance of the model with break against a VAR.

Table 9 displays the new performance ratio with the explained methodology. Results
are globally similar than the previous attempt with a growing sample although the
VAR process do slightly better than previously for ω. Nonetheless, with respect to
Section 5.2, while ratio of the error forecasts of the state variable for the employment
rate λ show an upper ratio until horizon 7, it shows significant improvement on the
remaining horizon especially for the CES specification. Finally, here a clear difference
of performance in favor of the CES production function appears in table 9.

5.4 Understanding the Results for the Employment Rate

Throughout the backtesting, the employment rate, λ, did not perform as well as the
other state variable ω. To understand why, one should focus on the performance and
appreciate how the sub-periods have influenced the determination of the global mea-
sures. For the sake of clarity, one can consider the time horizon h = 8, in the column
CES, and λ of table 8, 1.07286. This value is Dx

8/D
V AR
8 , where x stands for the Good-

win model with a CES production function. The goal of the proposed exercise is to
plot all components that made Dx

8 and DV AR
8 , namely, ∀i8 = 1, . . . , 100, dγ(xxi8 , x

t
i8), and

dγ(xV ARi8 , xti8).
35This observation holds for the Lotka-Volterra-like model as well as the VAR.
36This frame 150 represents slightly more that half of the sample.
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Figure 6: The performance of λ for the Goodwin model with a CES technology, in red,
and for the VAR model, in black. Horizon: 8 quarters; estimated on a rolling window.

Figure 6 shows the timeseries dγ(xV ARi4 , xti4) in black and the timeseries dγ(xxi4 , x
t
i4)

in red. At any given date, when the red line is above the black line, it means that the
error made by the VAR for a four-period-ahead forecast is lower than the error of the
model x. Qualitatively, one sees that the VAR outperforms the model x for the last
recession periods: (i) the oil shocks of the 1970s’; (ii) the Kuwait invasion (reported
from 1990:Q3 to 1991:Q1.37); (iii) the burst of the dot-com bubble (reported from
2001:Q1 to 2001:Q4); and (iv) the subprime mortgage crisis (reported from 2007:Q4
to 2009:Q2). Removing those periods would certainly increase the accuracy of the
forecast.

An empirical extension with the goal of increasing the reliability of the prediction
made for λ could be the theoretical extension proposed by Keen (1995) and is a promis-
ing avenue for future research. Keen (1995) introduced debt into the dynamic, and by
doing so, necessarily introduced the investment function that plays an important role
in the global dynamics, especially for the dynamic of λ,

λ̇ = λ

(
κ(π)
ν
− [α + β + δ]

)
,

where π = 1 − ω − rd, with r as interest rate and d representing debt-to-GDP ratio.
If one sets κ(x) = x and r = 0, the equation for λ̇ is the same as in system (1). By
breaking the equality between profit and investment, Keen had a new dimension with
debt. Although his dissipative model is three-dimensional, it gives room for emerging
phenomenon such the Minsky moment and financial instability. Nonetheless, Keen’s
assumption allows for more flexibility on the global behavior of λ that may better cap-
ture the crisis effect. Note that van der ploeg mentioned this extension as an extension
within the Goodwin framework.

6 Concluding Remarks and Further Extensions

This paper provided a global methodology to assess a class of macroeconomic models
such as Goodwin’s. I proposed a methodology to estimate continuous-time macroeco-
nomic models with low-frequency data. An experiment was carried out by testing the

37The recession dates reported are from the NBER.
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modern version of the Goodwin model and one of its extensions, the van der Ploeg
(1985) model. To date, the results regarding the empirical success of the Goodwin
model have been mixed. This paper tackled the question of the empirical estimation
Goodwin model from a different perspective. Instead of inferring the model parameter
by parameter or equation by equation, the author’s approach allowed for an assessment
of the model as a whole.

Results of the estimation show that the cycles could have structurally changed along
the decades, meaning that, for the US, three sub-periods can be drawn out from the
data: (i) 1948:Q1-1983:Q2; (ii) 1983:Q3-1999:Q3; and (iii) 1999:Q4-. For each of
the sub-periods, the economy endowed with Leontief technology outperforms the CES
counterpart in explaining the data’s behavior. Additionally, a backtesting strategy based
on an out-of-sample forecast was considered. The aim was to assess whether the model
may be used for prospective scenarios. To do so, I compared its forecast ability against
a VAR and obtained a globally positive result. That is to say that a global performance
measure showed that the Goodwin-like models are–substantially–better at forecasting
the state variables ω and λ, especially CES production function specification.

This paper added to a growing body of work that has developed theoretical models
all based on the Goodwin-Lotka-Volterra model. The methodology used in the paper
may been seen as a starting point for further empirical studies of extensions of Good-
win based models. A desirable extension would involve testing the Keen model and
evaluating the investment function in order to provide a more accurate forecast for the
employment rate, λ, and, in the meantime, a more precise estimate of the depreciation
rate of capital. Furthermore, the estimation framework can be improved by extending
the methodology to missing data points in order to allow the estimation technique to
cope with various frequencies within the dataset.
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Appendices
Appendices are threefold: (i) compute the derivation of the stochastic models; (ii) in-
troduce extensively the estimation technique named the simulated maximum likelihood
(hereafter SMLE) illustrated by an example; and (iii) emphasize numerical problems of
the inference of the short term Phillips curve.

A The models derivation

This appendix will introduce only the stochastic models. The deterministic counter-
parts will be deduce from the stochastic. The Goodwin-predator-prey model (Goodwin,
1967) will be first presented, the extension of van der Ploeg (1985) will follow.

A.1 The stochastic predator-prey model

Goodwin endows the productive sector with Leontief technology

Yt = min
(
atLt,

Kt

ν

)
,

where, Yt, is the real output, Lt, is the employed population, at, the labor productivity,
Kt, is the stock of capital, and ν is the (constant) capital-to-output ratio. By assuming
full capacity utilization, the following equality holds:

Yt = atLt = Kt

ν
.

The labor productivity is assumed to grow according to a stochastic process

dat
at

= αdt− σ1(.)dB1
t ,

where σ1(.) is the diffusion function (the arguments can be all the state variables) and,
B1
t , is a Brownian motion. For the sake of clarity, the remaining of the model derivation

is divided into two subsections, the first for the wage share and the second for the
employment rate.

A.1.1 The wage share

Real wages growth is assumed to fluctuate according to the stochastic differential equa-
tion (hereafter SDEs)

dWt

Wt

= Φ(λt)dt+ σ2(.)dB2
t ,

where Φ(.) is a smooth function, σ2(.) the diffusion process of, B2
t , a Brownian motion

assumed to be orthogonal to B1
t . The wage share, ω, is defined as

ωt := WtLt
Yt

= Wt

at
.

Using the multidimensional version of the ı̂to lemma for the function f(x, y) = x/y, one
has

dωt
ωt

=
(
Φ(λt)− α + σ2

1(.)
)
dt+ σ1(.)dB1

t + σ2(.)dB2
t . (7)
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A.1.2 The employment rate

The total labor force, N , is assumed to grow exogenously so that

dNt

Nt

= βdt.

The employment rate, λ, is defined as

λt := Lt
Nt

.

The capital accumulates according to

dKt

Kt

:=
(
It
Kt

− δ
)
dt,

where, It, is the investment and δ is the (constant) depreciation rate of capital. Profits,
Π, is defined as

Πt := Yt −WtLt

Thus, the profit rate (profit-to-output ratio) is defined by

πt := Πt

Yt
= 1− ωt.

When assuming profits equal investment (It = Πt),

dKt

Kt

=
(

(1− ωt)
ν

− δ
)
dt.

The employment rate, λ, can be seen as

λt = Lt
Nt

= Kt

νatNt

.

Using ı̂to lemma for the function f(x, y, z) = x/(νyz)38 one has

dλt
λt

=
[

(1− ωt)
ν

− (α + β + δ) + σ2
1(.)

]
dt+ σ1(.)dB1

t . (8)

Equations (7) and (8) make the two-dimensional stochastic prey-predator model. One
can note that if σ1(.) = σ2(.) = 0, the system becomes the deterministic prey-predator
model.

A.2 The stochastic van der Ploeg extension

Suppose that the productive sector is endowed with CES technology so that

Y := C
[
πK−η + (1− π)(λLL)−η

]− 1
η (9)

38Computation details will be a special case of the van der Ploeg model in the next Section.
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where λL, the (CES) labor productivity, follows the stochastic process

λ̇L

λL
= αdt− σ1dB

1
t . (10)

Assuming that the real wage, W , is determined as the marginal labor productivity of
the CES production function,

∂Y

∂L
= W. (11)

For simplicity, one can consider that Le := λLL, then

∂Y

∂Le
= ∂Y

∂L

1
λL
. (12)

Using equations (11) and (9),

∂Y

∂Le
= (1− π)

Cη

(
Y

Le

)1+η
.

Equalizing equations (11) and (12) through (9) :

(
ω

1− π

) 1
η

C = Y

Le

⇔
(

ω

1− π

) 1
η

CλL = Y

L
(13)

A.2.1 The wage share

As previously, the wage bill-to-output ratio is ω = WL
Y

. Defining, a := Y/L, the labor
productivity, the equality, ω = W/a, holds. Until now, we do not know the dynamics of
ω. The idea is to assume a SDEs for ω, so that

dωt = ωt(fdt+ g1dB
1
t + g2dB

2
t ). (14)

One has to identify the f , g1 and g2 functions.39 As previously, the real wage growth
evolves according to

dWt = Wt(φ(λt)dt+ σ2dB
2
t ). (15)

Or, from equation (13), one has

at =
(

ωt
1− π

) 1
η

CλLt ,

where ω is defined by equation (14) and λL by equation (10). Using the ı̂to formula for
the function a = f(ω, λL) one has

dat
at

= 1
η

dωt
ωt

+ dλLt
λLt

+
(

1− η
η2

(g2
1 + g2

2)
2 − 1

η
σ1g1

)
dt. (16)

39To simplify the notations, we will drop the “(·)” for the functional form.
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This result is obtained when assuming that the two Brownian motions, B1
t , and B2

t , are
independent. Applying once again the ı̂to formula for ω with equations (15) and (16)

dωt = ωt

(
dWt

Wt

− dat
at
− d < a,W >t

atWt

+ d < a, a >t

a2
t

)
. (17)

Therefore, we can identify

dωt
ωt

= φ(λt)−
f

η
− α− 1

2

(
1− η
η2 (g2

1 + g2
2)− 1

η
σ1g1

)
− σ2g2

η
+
(
g1

η
− σ1

)2

+
(
g2

η

)2

︸ ︷︷ ︸
=f

dt

+
(
σ1 −

g1

η

)
︸ ︷︷ ︸

=g1

dB1
t +

(
σ2 −

g2

η

)
︸ ︷︷ ︸

=g2

dB2
t .

Thus,

g1 =
(

η

η + 1

)
σ1

g2 =
(

η

η + 1

)
σ2

f =
(

η

η + 1

){
φ(λt)− α−

1
2

(
1− η

(1 + η)2 (σ2
1 + σ2

2)− σ2
1

η + 1

)

− σ2
2

η + 1 +
(
σ1η

1 + η

)2

+
(

σ2

1 + η

)2
 .

Finally, the wage share dynamics is

dωt
ωt

=
(

η

η + 1

)φ(λt)− α−
1
2

(
1− η

(1 + η)2 (σ2
1 + σ2

2)− σ2
1

η + 1

)
σ2

2
η + 1 +

(
σ1η

1 + η

)2

+
(

σ2

1 + η

)2
 dt

+
(

η

η + 1

)
σ1dB

1
t +

(
η

η + 1

)
σ2dB

2
t (18)

One can note that if η → +∞, capital and labor do not substitute, i.e. we retrieve the
Leontief case as previously defined,

dωt
ωt

=
(
φ(λt)− α + σ2

1

)
dt+ σ1dB

1
t + σ2dB

2
t .

A.2.2 The employment rate

As previously mentioned, the total workforce grows at a yearly pace β

dNt

Nt

= βdt

The employment rate is defined by, λt := Lt/Nt, the following dynamic holds

dλt
λt

= dLt
Lt
− dNt

Nt

.
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This is a consequence of equation (17) and the fact that N , the total labor force, is
deterministic. The capital accumulates so that

dKt

Kt

:=
(

(1− ωt)
νt

− δ
)
dt. (19)

Using equations (9) and (11), the capital-to-output ratio is such that

νt =
(1− ωt

π

)− 1
η 1
C
.

Thus, the accumulation of capital can be written

dKt

Kt

:=
(
Cπ−1/η(1− ωt)1+1/η − δ

)
dt. (20)

Using the ı̂to lemma for the function f(ωt) = νt, the capital-to-output ratio evolves so
that

dνt
νt

= 1
η

ωt
1− ωt

dωt
ωt

+
(

ωt
1− ωt

)2
(

1
1 + η

)(
σ2

1 + σ2
2

2

)
dt. (21)

Again, by using the ı̂to formula for L = K/(νa)–the function will be L = f(K, ν, a) =
K/(νa). One has

dL

L
= dK

K
− dν

ν
− da

a
− d < K, a >t

Ka
− d < K, ν >t

Kν
+ d < ν, a >t

νa

+ d < a, a >t

aa
+ d < ν, ν >t

νν
+ d < K,K >t

KK
,

thus,

dLt
Lt

=
(
Cπ−1/η(1− ωt)1+1/η − δ

)
dt

− 1
η

ωt
1− ωt

dωt
ωt
−
(

ωt
1− ωt

)2
(

1
1 + η

)(
σ2

1 + σ2
2

2

)
dt

− 1
η

dωt
ωt
− α + σ1dB

1
t −

(
1− η

(1 + η)2
(σ2

1 + σ2
2)

2 − σ2
1

η + 1

)
dt

− 0− 0 +
(

ωt
1− ωt

)−η
(

σ1

1 + η

)2

+
(

σ2

1 + η

)2
 dt

+
(

η

η + 1

)2

σ2
1dt+

(
σ2

1 + η

)2

dt

+
[(

ωt
1− ωt

1
1 + η

)]2

(σ2
1 + σ2

2)dt+ 0.

31



The employment rate’s SDEs is

dλt
λt

=
(
Cπ−1/η(1− ωt)1+1/η − (δ + β + α)

)
dt (22)

−
(

ωt
1− ωt

)2
(

1
1 + η

)(
σ2

1 + σ2
2

2

)
dt

−
(

1− η
(1 + η)2

(σ2
1 + σ2

2)
2 − σ2

1
η + 1

)
dt

+
(

ωt
1− ωt

)−η
(

σ1

1 + η

)2

+
(

σ2

1 + η

)2
 dt

+
(

η

η + 1

)2

σ2
1dt+

(
σ2

1 + η

)2

dt

+
[(

ωt
1− ωt

1
1 + η

)]2

(σ2
1 + σ2

2)dt− 1
η

(
dωt

ωt(1− ωt)

)
+ σ1dB

1
t

The stochastic van der Ploeg model is entirely defined by equations (22) and (18). It is
worth mentioning that if η → +∞ and C := 1/ν where ν is the constant capital-output
ratio, one has

dλt
λt

=
(1− ωt

ν
− (α + β + δ) + σ2

1

)
dt+ σ1dB

1
t

Furthermore, if the model is deterministic (σ1 = σ2 = 0), we retrieve a model close to
the one of Grasselli & Maheshwari (2017a), i.e. :

dλt
λt

=
(
Cπ−1/η(1− ωt)1+1/η − (δ + β + γ)− 1

η

(
dωt

ωt(1− ωt)

))
dt.

B The SMLE method

The appendix will derive in length the SMLE method in a multivariate framework. Most
of this derivation is available in Durham & Gallant (2002) in an univariate framework.

B.1 Notations

In what follows, one can consider a multivariate SDEs, on the probability space (Ω,F ,P)
of the form

dXt = f(Xt)dt+ g(Xt)dBt, (23)

where

• Xt ∈ Rn,

• Bt is a d-dimensional Brownian motion,

• f : Rn → Rn,

• g : Rn → Rn×d, where ∀x, g−1(x)g(x) is positive definite.
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B.2 Numerical Simulation of the Solution

Analytic solution of economic models are unlikely to be available. To approximate the
numerical solution of model (23), one can use the generalization of the Euler explicit
method for ordinary differential equations to stochastic differential equations, namely
the Euler-Maruyama scheme. For SDEs, there exists several manners of approximating
the solution, for instance the Jimenez et al. (1999) scheme. Despite its low efficiency,
the Euler, the Euler-Maruyama scheme is computationally stable for any case.

Consider the model (23), with the initial condition, X0 = xo, and suppose that one
wishes to solve the SDEs on some interval of time [0, T ]. Then the Euler–Maruyama
approximation to the true solution X is the Markov chain Y defined in the following
manner:

• Consider a partition of the interval [0, T ] into N equal subintervals of width ∆t >
0:

0 = τ0 < τ1 < · · · < τN = T and ∆t = T/N.

• Set the initial condition Y 0 = x0.

• Recursively one can define Yn, for 1 ≤ n ≤ N , by

Yn+1 = Yn + f(Yn) ∆t+ g(Yn) ∆Wn, (24)

where
∆Wn = Wτn+1 −Wτn .

The random variables ∆Wn are independent and identically distributed normal
random variables with expected value zero and variance ∆t.

B.3 The estimation procedure

The methodology and the notations are borrowed from Durham & Gallant (2002), and
is extended to the multivariate analysis.

B.3.1 Overview

If one writes the joint likelihood function as being p(x1, . . . , xT ), where the observations
are xi ∈ Rn,∀i ∈ {1, . . . , T}, one can rewrite the likelihood function as being:40

p(x1, . . . , xT ) = p(x1)
T∏
i=2

p(xi, i;xi−1, i− 1).

The objective of the SMLE procedure is to give methodology to compute p(xt, t;xs, s),
in other words the transition probability of the process, x, from time s to time t. The
first order approximation p(1)(xt, t;xs, s) defined by (24) will be accurate if the interval
[s, t] is short enough. Otherwise, one may partition the interval such that the first-order
approximation is sufficiently accurate on each subinterval (s = τ0 < . . . < τM = t).

40The first element of the likelihood, p(x1), is unknown and will be neglected in the computation of
the likelihood.
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The random variables, xτi, are unobserved, and must be integrated out. Because the
process is Markovian, one obtains

p(xt, t;xs, s) ≈ p(M)(xt, t;xs, s)

:=
∫ M−1∏

m=0
p(1)(um+1, τm+1;um, τm)dλ(u1, . . . , uM−1)

where, λ, is here the Lebesgue measure, and the conventions u0 = xs, and uM = xt
are used. Monte Carlo integration is generally the only feasible way to evaluate the
integral.

For s < t suppose that xt|xs has a transition density p(xt, t;xs, s) and let

p(1)(xt, t;xs, s) = φ(xt;xs + f(xs)(t− s), g(xs)
√

(t− s))

where φ(x, f, g) is the Gaussian density, be its first-order approximation. One can prove
that, under mild assumptions41 reported in Durham & Gallant (2002),

lim
M→+∞

p(M)p(., t;xs, s, θ) = p(., t;xs, s, θ) , in L1(λ) (25)

Pedersen (1995a,b) show that the convergence presented above is reach for the linear
case. To the best of my knowledge, no proof has be made with nonlinear functions nor
counterexample as been found. In the paper, each time a nonlinear form is used, it has
been tested using some data generating process (hereafter DGP).

B.3.2 How to Compute the Integral?

Let {uk = (uk,1, . . . , uk,M−1), k = 1, . . . , K} be independent draws from q–an importance
sampler. One can define

p(M,K)(xt, t;xs, s, θ) = 1
K

K∑
k=1

∏M
m=1 p

(1)(uk,m, τm;uk,m−1, τm−1, θ)
q(uk,1, . . . , uk,M−1) (26)

where uk,0 = xs and uk,m = xt for all k. Under some mild assumptions and the strong
law of large numbers, on has

lim
K→+∞

|p(M,K)(xt, t;xs, s, θ)− p(M)(xt, t;xs, s, θ)| = 0 a.s.

Durham & Gallant (2002) remarks that when M increases, for a fix K, the bias will
be reduced but the variance will increase. One may increase sufficiently K in order to
reduce that variance but it is costly since the variance decreases at the speed 1/

√
K.

B.3.3 Which Importance Sampler to choose?

The importance sampler that will be used is the one which draws um+1 from a Gaussian
density based on the first approximation conditional on um and xt. That is, treating um
and uM = xt as fixed, one draws um+1 from the density

p(um+1|um, uM) = p(um+1|um)p(uM |um+1)/p(uM |um)
= φ(um+1;um + µ̃mδ, g̃(·)2

mδ)
41Including a nonexploding, unique weak solution of (5).
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where δ = (t− s)/M , and

µ̃m =
(
uM − um
t− τm

)
, g̃(·)m =

(
M −m− 1
M −m

)
g(·)2

This sampler is called the modified Brownian bridge.42

Although it is possible to compute the likelihood directly from (26), it is time-
consuming. Suppose we have data generated, on the probability space (Ω,F ,P), by
the process

dX = f(X)dt+ g(X)dBP (27)

where B is a d−dimensional Brownian motion under the probability P. Suppose we
want to change the drift to the process by including γ = µ̃(X)− f(X) so that the drift
becomes µ̃(X). Provided that γt(Xt) is adapted to Bt and there is an adapted solution
u to the equation

u(X) = g(X)−1(µ̃(X)− f(X)) (28)

then the process can be rewritten as

dX = µ̃(X)dt+ g(X)[u(X)dt+ dBP
t ]

under P. The process will also satisfy

dX̃ = µ̃(X̃)dt+ g(X̃)dB̃Q
t (29)

Assuming weak uniqueness, the solution of the process (27) as the same distribution
than the process in (29). Girsanov’s theorem tells us that the Radon-Nykodym deriva-
tive of Q with respect to P is

dQ
dP
|Ft = Mt

= exp

{
−

d∑
i=1

∫ t

0
u(i)(Xs)dB(i)

s −
1
2

∫ t

0
‖u(Xs)‖2ds

}

or written differently, under P

dMt = Mt

(
d∑
i=1
−u(i)(Xs)dB(i)

s

)

or under Q,

dMt = Mt

(
d∑
i=1

u(i)(Xs)dB̃(i)
s

)

with the initial condition that Ms = 1 and where u(i)(Xs) refers the the ith coordinate
of (28). Thus one can obtain the continuous-time expression

p(xt, t;xs, s) =
∫
p(xt, t;u, τM−1)ρM−1(u)dQM−1(u), (30)

42It is named after Durham & Gallant (2002).
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where QM−1 is the probability measure induced by X̃τM−1. The integral is computed by
generating samples {(uk,M−1, rk,M−1)} from the joint process (X̃(M)

M−1,M
(M)
M−1) using the

Euler-Maruyama scheme,

p(M,K)(xt, t;xs, s, θ) = 1
K

K∑
k=1

p(1)(xt, t;uk,M−1, τM−1)rk,M−1.

Durham & Gallant (2002) found that it is more stable to base the Euler-Maruyama
scheme for M on

d(log(M)) = −1
2

d∑
k=1

(u(i)(X̃))2dt+
d∑

k=1
u(i)(X̃)dB̃ (31)

Finally, I will compute the simulated log-likelihood

l(M,K)
n (θ) =

n∑
i=1

log p(M,K)(Xi, ti;Xi−1, ti−1, θ).

C Example of the estimation method with a DGP

Simulation of 200 time steps of the Goodwin-like models give the following dynamics,
The starting value of the simulation are (ω0, λ0) = (0.62, 0.92).
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Figure 7: Simulation: The phase por-
trait of the system 3.
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Figure 8: Simulation: The phase por-
trait of the system (4)

C.1 Test of the estimation procedure

For the estimation, I use M = 16 and K = 128.43 Regarding the results of table 10, one
can note that we cannot rely on the sign of the sigmas since the Brownian motion is
symmetric44 and the model specification is linear with respect to the Brownian motion.

43These parameters are chosen to make the tradeoff between time of computation and accuracy of the
results.

44Indeed, if Wt is a Brownian motion, −Wt is also a Brownian motion.
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Parameter Starting Value Estimated Value True Parameter
φ0 0.015 1.9893e-02 1.7806e-02
φ1 0.0001 6.4706e-05 6.4103e-05
ψ0 2.7 3.0245 3
ψ1 0.1 0.11580 1.1667e-01
σ1 0.02 -1.3836e-03 0.0015
σ2 0.02 1.4382e-02 0.015

Table 10: Results for the estimation of the simulated system (3). M = 16, K = 128.

Parameter Starting Value Estimated Value True Parameter
φ0 0.015 1.7224e-02 1.7806e-02
φ1 0.0001 6.8359e-05 6.4103e-05
Cb 0.1 1.2442e-01 0.12
ψ1 0.1 4.1046e-02 4.0100e-02
η 0.1 5.9692e+01 100
σ1 0.01 1.0325e-02 1.5000e-02
σ2 0.01 1.4528e-02 1.5000e-02

Table 11: Results for the estimation of the simulated system (4). M = 16, K = 128.

D Numerical test on the inference of the short Term
Phillips curve

This appendix aims to show how a linear regression techniques to estimate a continuous-
time short term linear Phillips curve of the form

Ẇ

W
= Φ(λ)

can lead to spurious results. For that purpose, we generate data for the employment
rate, λ. Suppose that λ is generated according to an autoregressive process with a lag
one, so that

λt = 0.96 ∗ (1− 0.51/(N/T/4)) + 0.51/(N/T/4)λt−1/N + εt,

where εt ∼ N (0, T/N). The parameters are chosen so that the mean for λ is 0.96 and the
correlation of λt and λt+1/4 is 0.5. N = 50× 10000 is the number of subperiods between
0 and T = 50. Using that λ, the wages will be simulated using the Euler-Maruyama
scheme of the stochastic differential process

dWt = Wt ((φ(λt))dt+ σdBt) .

With W0 = 100, and σ = 0.01. The Φ(.) function is suppose to be linear so that

Φ(λ) = φ0 × λ+ φ1

= 0.89× λ− 0.82

Two samples will be created by talking the the value that correspond to one quarter
for both λ and W . The log−return of the quarterly timeserie of W is computed, its
scatterplot with the quarterly timeserie of λ. If one uses linear regression techniques
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Figure 9: Simulation: The employment rate versus the one-quarter wage growth.

on the quarterly data to estimate the model of the DGP given above, one finds

φ̂0 = 0.371; φ̂1 = −0.3214.

One can conclude that, in this example, the results are at odds with the parameters
used for the DGP.
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